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expanding (32) to first order in a Taylor series about 
some 'guessed' value of K, Kg. One obtains the 
following values to be used in (2). 

(COS 2 20j + Kg) 2 

ciJ = cos 2 2 0 j -  cos 2 20~' 

(cos z 20 i + Kg)(COS 2 20j + Kg) 
d u = K g -  (33) 

cos / 2 0 j -  cos 2 20~ 

The weighting scheme was implemented in a Fortran 
program. The weights were refined in cycles according 
to (30) until the maximum relative shift was less than a 
specified quantity (a value of 0.5 % was chosen). It was 
found that 6 had to be small (0.03) to avoid divergence. 
A considerable number of cycles (~650) were neces- 
sary in order for the weights to converge but the 
calculation nevertheless is extremely rapid on a modern 
computer. We have not attempted to improve the rate 
of convergence. The value of Ke initially chosen was for 

a kinematical monochromator and the whole calcu- 
lation was rerun with Kg equal t o / (  obtained from the 
first run. The value o f / (  determined is highly insensitive 
to the value of Kg. 

Some simulations were carried out to test the method 
and the program. These were based on the data used 
in paper II of this series but with intensities calculated 
from a model value of K, and with a pseudo-random 
Gaussian error added in to match the counting 
statistics of the experiment. From these simulations it is 
clear that the weighting scheme produces values of 3? 
closer to K than the simple weighting scheme of x U and 
that the e.s.d, of/~ is also reduced. 
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Abstract 

By embedding the three-phase structure seminvariant T 
and its three symmetry-related variants in suitable 
quintets Q (five-phase structure invariants) one obtains 
the extensions Q of T to which T is related via the 
space-group symmetries. The neighborhoods of T are 
then defined in terms of the neighborhoods of its 
extensions. The conditional probability distribution of 
T, given the seven magnitudes I EI in its first 
neighborhood, is derived. The distribution yields a 
reliable estimate (0 or n) for T in the favorable case that 
the variance of the distribution happens to be small. 

1. Introduction 

In recent years the basic concepts and mathematical 
formalism needed for the development of the prob- 
abilistic theory of the structure seminvariants have been 
elucidated. For example, it has long been known that, 
for fixed enantiomorph, the collection of observed 
magnitudes IEI determines, in general, the values of all 
the structure seminvariants. A major recent advance is 

0567-7394/80/040624-09501.00 

the neighborhood principle: For fixed enantiomorph, 
the value of any structure seminvariant T is primarily 
determined, in favorable cases, by the values of one or 
more small sets of magnitudes I EI, the neighborhoods 
of T, and is relatively insensitive to the values of the 
great bulk of remaining magnitudes (Hauptman, 1975). 
The conditional probability distribution of T, given the 
magnitudes in any of its neighborhoods, yields an 
estimate for T which is particularly good in the 
favorable case that the variance of the distribution 
happens to be small. With the identification of systems 
of neighborhoods for the structure invariants, the 
probabilistic theory of the structure invariants 
developed rapidly, especially in space groups P1 and 
P1, but a great deal of work still remains to be done in 
deriving accurate and readily computable probability 
distributions, particularly for the space-group-special 
structure invariants. 

Again, with the formulation of the extension concept 
[Hauptman (1977b, 1978); but see Giacovazzo (1977) 
for the equivalent concept called representation theoryl, 
the probabilistic theory of the structure seminvariants 
was reduced to that of the structure invariants, which 
is more highly developed. In particular, the 

© 1980 International Union of Crystallography 
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neighborhoods of any structure seminvariant are 
defined in terms of those of its extensions, and 
associated probability distributions may then be 
derived. How this is to be done has been described in a 
few cases (Giacovazzo, 1978a,b; Green & Hauptman,  
1976, 1978; Hauptman & Green, 1978; Hauptman & 
Potter, 1979). The importance of these developments of 
course is that the structure seminvariants, as certain 
well defined linear combinations of the phases, lead to 
unique values for the individual phases. Furthermore,  
the structure seminvariants are available in much larger 
numbers than the structure invariants, and the prob- 
abilistic theory of the structure seminvariants makes 
strong use of the space-group symmetries as well. 

In the present paper the probabilistic theory of the 
three-phase structure seminvariant T in P i ,  based on 
the first neighborhood of T, is described. Because of the 
heavy dependence on recent work, the present paper is 
greatly abbreviated, and only the briefest sketch of the 
derivation of the major result, equations (4.2)-(4.5), is 
given in Appendices IV-VIII .  The derivation of the first 
neighborhood given in Appendices I - I I I  is described in 
somewhat greater detail because it is expected that this 
work will serve as the prototype for deriving neigh- 
borhoods of the structure seminvariants in general. 

magnitudes (2.4) and (2.5) in the first neighborhood. 
As described in the sequel, the favorable cases here 
require first that the three magnitudes (2.4) all be large 
and second that either all four magnitudes (2.5) be 
large, in which case T _~ 0, or that precisely two of the 
four magnitudes (2.5) be large and the remaining two 
be small, in which case T_~ zc. 

3. The probabilistic background 

Suppose that a crystal structure in P1 is fixed and that 
the seven non-negative numbers R 1, R E, R3; r, r 1, r 2, r 3 
are also specified. Denote reciprocal space by W and 
by W x W x W the threefold Cartesian product which 
consists of all ordered triples (h,k,I) of reciprocal 
vectors. Suppose finally that (h,k,l) is the primitive 
random variable which is assumed to be uniformly 
distributed over the subset of W x W x W defined by 
(2.2), (2.4) and (2.5). Then the structure seminvariant 
T [(2.1)], as a function of the primitive random variable 
(h,k,i), is itself a random variable. Denote by P+ or P -  
the conditional probability, given the seven magnitudes 
(2.4) and (2.5), that T be 0 or re, respectively, or, 
equivalently, that cos T = + 1 or - 1 ,  respectively. 

2. The first neighborhood of the three-phase structure 
seminvariant T 

The linear combination of three phases 

T = ~0h + ~0k + ~01 (2.1) 

is a structure seminvariant in P [  provided that 

h + k + 1 -- 0 mod(222), (2.2) 

i.e. provided that the three components of h + k + i are 
even. Then the components of the eight reciprocal 
vectors 

½(_+h _+ k + I) (2.3) 

are integers. Following techniques recently described 
(Hauptman,  1977b, 1978; Giacovazzo, 1977), one 
embeds the structure seminvariant T and its symmetry- 
related variants in suitable quintets (five-phase struc- 
ture invariants) in order to obtain the extensions Q of T 
to which T is simply related. In this way, as described 
in Appendices I-III ,  one finds that the first 
neighborhood of T consists of the seven magnitudes 

R l = I E h l ,  R 2 = [ E k l ,  R 3 = IEiI; (2.4) 

r =  IEk(h+k+l)l , r~ = [ E ½ ( _ h + k + l ) l ,  

r 2 = I E ½ ( h _ k + t ) [  , r 3 = I E ½ ( h + k _ l ) l .  ( 2 . 5 )  

In view of the neighborhood principle, the value of T 
is, in favorable cases, primarily dependent on the seven 

4. The conditional probability distribution P+ of the 
three-phase structure seminvariant T, given the seven 

magnitudes in its first neighborhood 

Make the definition 

N 

a,, = Z f~', (4.1) 
j = l  

where N is the number of atoms in the whole unit cell 
and f j  is the zero-angle atomic scattering factor of the 
atom labeled j .  In the X-ray diffraction case the f j  are 
equal to the atomic numbers Zj and are therefore all 
positive; in the neutron diffraction case some of the f j  
may be negative. The formula for P+, the major result 
of this paper, is an easy consequence of (VIII.6) and 
(VIII. 10), Appendix VIII: 

1 
P - + = - - Z  +, K = Z  + + Z - ,  (4.2) 

K 

Z -+ = exp (+ V) ~ exp (W+), (4.3) 
r h ,  r/2, r h = + I 

[+ V =  ( 6 a ] -  6o2 o3 o4 + o~ a5)(r z + rl z + r, z + r]) 

a 9:2 ( 2 a ~ -  3a2 a3 a4 + a~ a5) e l  RE R3, 

(4.4) 
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W + = (rll r q  + r h 1/3 r 2 r s) 

0" 3 1 (202 -- 04)R 2 R3] + ~,2 R , -  G~ 0" 2 
] 

+ (1/2 rr2 + ~3 ill r3 q )  

03  

+ o3/2 RE-- 1 (2o2 O'2 0"4)R 3 R 1] 

+ (r/3 rr3 + rl 1112 rl r2) 

o 3 1 (202 o204)R R2] (4.5) 
x +_~/zR3--OS 2 -  , , 

where the summands of (4.3) consist of the eight 
exponentials obtained by permitting each of r/l, r/2, r/3 to 
take on the values + 1 and - 1  independently in (4.5); 
otherwise upper (lower) signs in (4.2)-(4.5) go together 
(Hauptman, 1979). 

Nevertheless, the applications also show that extreme 
values of the discriminant A are well correlated with the 
values of T in the sense that T ~_ 0 or 7t according as 
A ~> 0 or A < 0, respectively. Thus, as has been observed 
many times previously (e.g. Fortier & Hauptman, 
1977) the discriminant proves to be a useful and readily 
computable indicator of the value of the seminvariant. 
In this particular case, however, little is gained by using 
the discriminant, since (4.2)-(4.5) are also readily 
computable. 

Inspection of (5.3) shows that, on the assumption 
that the three magnitudes (2.4) are large, A > 0 if 
all four magnitudes (2.5) are large; but A < 0 if 
precisely two magnitudes (2.5) are large and the 
remaining two are small. In short T _ 0 or ~t in the 
respective cases, and the qualitative prediction of Table 
3 (Appendix III) is in fact borne out. Inspection of the 
distribution (4.2)-(4.5) leads to the same conclusion, 
but in a less transparent way. 

Finally, it is not difficult to show that if one of the 
magnitudes (2.5) is outside the observed range, then it 
is to be replaced by unity, the average value of I EI 2, in 
(5.3) or (4.2)-(4.5) (see, for example, Giacovazzo, 
1975; Heinerman, Krabbendam & Kroon, 1977). 

5. The discriminant of T 

If one bases the derivation of P-+ on (VII.l) of 
Appendix VII [rather than on (VII.3), as was done in 
Appendix VIII and § 4], employing the method of 
Appendix VIII and the identity 

P3 = exp (log P3), (5.1) 

one obtains P-+ in pure exponential form: 

P+- ._ exp (+A), (5.2) 
2 cosh A 

where A, the so-called discriminant of the structure 
seminvariant T, turns out to be 

A = { 3 9/2 2 r 2 r 2 ( 0 3 / ° 2 ) ( r  r~ r~ + r22 r~ + r~ r, ~ + r ~, r~ r~) 

- 1(20] -  020304)/09::! 

× (r 2 r ~, + r 2 r~ + r 2 r2 + r ~, r~ + r~r2 + r2 r~) 

+ (1/2o9/2)(6o] - 6o2 03 o4 + 0~ 05) 

x ( r  2 + r  2 + r ~ + r  2) 

- (2/09/2)(20]-- 3020304 + 02205)} R, R 2 R 3. 

(5.3) 

It is of course too much to expect that the pure 
exponential (5.2) can accurately represent the sum of 
the eight exponentials defined by (4.2)-(4.5), and some 
preliminary calculations confirm that (5.2) is in fact a 
rather poor approximation to the true distribution P+-. 

6. Concluding remarks 

For the special case that all atoms are identical, 
Giacovazzo (1978a) has derived the conditional prob- 
ability distribution of T, given the 17 magnitudes in 
the complete second neighborhood (called by him the 
first phasing shell), using a different mathematical 
technique. Although it is not possible to compare his 
result [Giacovazzo, 1978a, equation (10)] directly with 
(4.2)-(4.5), numerical comparisons will prove to be 
illuminating [see, e.g. Hauptman & Green (1976) where 
a similar comparison in the case of the four-phase 
structure invariant in P1 revealed significant dif- 
ferences between the results of the two techniques]. 

In the present paper the conditional probability 
distribution of the three-phase structure seminvariant 
T, given the seven magnitudes in its first 
neighborhood, has been found for space group P[.  
The distribution yields a reliable estimate (0 or ~r) for T 
in the favorable case that the variance of the distri- 
bution happens to be small. Because the structure 
seminvariants are available in much larger numbers 
than the structure invariants, it is anticipated that the 
results described here will find important application in 
the determination of real structures, and some initial 
calculations confirm this expectation. These ap- 
plications will be reported shortly. 

Of particular importance is the analysis leading to 
the definition of the first neighborhood given in 
Appendices I-III. This work, as well as the derivation 
of the distribution, has been written in such a way as to 



HERBERT HAUPTMAN 627 

permit easy generalization to the higher-order structure 
seminvariants, and the final results for the four- and 
five-phase structure seminvariants in P i  have been 
derived and will be published in the near future. It is 
expected also that the work described here will serve as 
a useful guideline for the derivation of analogous 
distributions in other space groups. 

distribution P+, (4.2)-(4.5), and the discriminant A, 
(5.3), is perfectly rigorous; the qualitative agreement 
among Table 3, P-+ and A, as well as the initial 
applications to be reported shortly, vindicates the 
approach described here. 

The research described here was supported in part 
by Grant No. CHE79-11282 from the National 
Science Foundation. 

A P P E N D I X  II 

The first two neighborhoods  o f  the extensions 

A P P E N D I X  I 

The extensions o f  T 

Following Hauptman [(1977b, 1978); but see also 
Giacovazzo (1977) for an equivalent procedure], one 
embeds the three-phase structure seminvariant. 

T =  ~ + ~ + tfi (I.1) 

and its three symmetry-related variants 

Tl = ~P-h + q)k -~- ~01, (1.2) 

T2 ~-- (Ph + (ff-k -t- 091, (1.3) 

T 3 = ~ + ~ + ~o_~. (1.4) 

in the respective quintets 

Qo = T + tP-½(h+k+0 + ~0-½(h+k+0, (I.5) 

Q~ = T~ + ~0_½(_h+k+l) q- ~0_½(_h+k+l) ' (1.6) 

Q2 = T2 + (ff-½(h--k+l) "~" (ff--½(h--k+l), (1.7) 

Q3 = T3 + (~-½(h+k--I) -Jr" (ff-½(h+k--I)" (1.8) 

In view of (I.1)-(I.4) and the space-group-dependent 
relationships among the phases, it is readily verified 
that (I.5) to (1.8) are five-phase structure invariants 
(quintets) and 

T = a o = a ~ = a 2 = o 3 .  (1.9) 

Thus the probabilistic theory of the three-phase 
structure seminvariant T is reduced to that of quintets 
which is well developed. In particular, the 
neighborhoods of T are defined in terms of the 
neighborhoods of the quintet. 

It should perhaps be stressed that each of the four 
quintets (I.5)-(I.8) is special since two phases in each 
quintet are equal to each other. For this reason, the 
reasoning of the following Appendices II and III is only 
plausible and should be regarded primarily as a 
heuristic device for identifying the first neighborhood of 
T. The analysis of the remaining Appendices IV to VIII 
however, leading to the major results of this paper, the 

Clearly only four of the five 'main terms' (Schenk, 
1975; Hauptman, 1977a) of the special quintet Q0 (I.5) 
are distinct. The first neighborhood of Q0 is accordingly 
defined to consist of the four magnitudes 

IEhl , IEkl , IEjl, ]E½(h+k+l)[. (II.l) 

Referring to the earlier work it is readily verified that 
only seven of the ten 'cross terms' of the special quintet 
Q0 are in fact distinct. Thus the second neighborhood 
of Q0 is defined to consist of the four main terms (II.1) 
and the seven cross terms 

IE~(-h+k+l) I , IE½(h-k+I)I, lE~(h+k-0] ; 

IEh+k i , Ifk+ll, IEi+hl ; [fh+k+ll, (II.2) 

or eleven magnitudes I EI in all. (In contrast, the 
second neighborhood of the general quintet consists of 
fifteen magnitudes I EI.) 

Not only does the earlier work serve to identify the 
first two neighborhoods of the special quintet Q0 but 
Table 2 ,of Hauptman (1977a) shows in a qualitative 
way what the relationship between Q0 and the 
magnitudes I EI in its second neighborhood must be. 
Thus the 1977 Table 2 leads, by suitable specialization, 
to rows 1-8 of Table 1. Although the 1977 Table 2 has 
16 rows, only eight of these yield entries in Table l 
which are internally consistent; the remaining eight 
rows of the 1977 Table 2, which would lead to 
contradictory entries in Table 1 (arising from the fact 
that only seven of the cross terms of the special quintet 
Q0 are distinct), are therefore omitted from Table 1. 
Thus the 16 rows of the 1977 Table 2 yield only rows 
1-8 of Table 1 for Q0- 

In a similar way it may be shown that the first 
neighborhood of the special quintet Q1 consists of the 
four magnitudes 

IEhl , Ifkl , IEII , If~_h+k+01 (II.3) 

and the second neighborhood of the four main terms 
(II.3) plus the additional seven cross terms 

IE½fh+k+01 , ] g½(h-k + I) ], ] g½(h+ k-l) ] ; 

[Eh_kl , I fk+ l l  , I f ;_h] ;  I f_h+k+l ] ,  (II.4) 

i.e. eleven magnitudes I EI in all. Now the 16 rows of 
the 1977 Table 2 for Q1 lead to the eight rows 9-16 of 
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Table 1. Particularly noteworthy is the fact that the 
second neighborhoods of Q0 and QI overlap and a main 
term of one becomes a cross term of the other. 

Table 1 is now completed in the obvious way, rows 
17-24 corresponding to Q2 and rows 25-32 to Q3. 
Again, the overlap of the second neighborhoods is to be 
noted, and the fact that main terms of one quintet 
appear as cross terms in others is particularly note- 
worthy (because of the implication that, in order to 
arrive at a proper definition of the first neighborhood of 
T, it is necessary to implicate the second neighbor- 
hoods of its extensions). 

Certain rows of Table 1 are mutually contradictory 
and others are mutually reinforcing. By combining 
those rows of Table I which are mutually reinforcing, 
(e.g. rows 2 and 10 of Table 1 give row 2 of Table 2) 
one obtains, in view of (I.9), Table 2 which leads 
directly to the first neighborhood of the structure 
seminvariant T, as shown next. 

APPENDIX III 

The first neighborhood of T 

The first seven entries (under magnitudes I EI) in rows 
2, 8, 11 and 20 of Table 2 are identical, thus leading to 
row 2 of Table 3. In a similar way all rows of Table 3 
are obtained. Table 3 shows that, provided all three 
magnitudes (2.4) are large, T ~_ 0 if all four magnitudes 
(2.5) are large; but if precisely two of the four 
magnitudes (2.5) are large and the remaining two are 
small, then T ~_ ~r. Thus the first neighborhood of T is 
defined to consist of the seven magnitudes (2.4) and 
(2.5), i.e., as it turns out, the set-theoretic union of the 
first neighborhoods of all of its extensions. For the 
three-phase structure seminvariant in P1 the 'favorable 
cases' of the neighborhood principle are defined by the 
entries of Table 3, i.e. the three magnitudes (2.4) are 
large and either all four magnitudes (2.5) are large or 

Table 1. The probable values of  the extensions Qj, j = O, 1, 2, 3, o f  T, given the magnitudes in their second 
neighborhoods; L means large; S means small; obtained by suitable specialization from selected rows of  

Hauptman's 1977(a) Table 2 
' Magnitudes IEI 

Ro~ Qj ~ k ~ ½c.,÷_~÷9 ½¢-"_÷."÷9 ½(~-~÷9 ½(~÷".-9 ".+". ~÷~ ~+,. ,.-~ ~-~ ~-,. ,_÷~÷~ -,.+.,÷~ ,.-~÷.~ .,÷~-~ 

1 0 L L L L L L L L L L L 

2 ~r L L L L L S S L S L S 

3 IT L L L L S L S L L S S 

4 ~ L L L L S S L S L L S 

S ~r L L L L S S S L L L S 

6 ~t L L L L L S S S S S L 

7 ~ L L L L S L S S S S L 

8 ~T L L L L S S L S S S L 

0 L L L L L L L L L L 

7t L L L L L S S S L L 

L L L S L S L L L S 

it L L L S L L S L S L 

L L L S L S S L L L 

~t L L L L L S S S S S 

~t L L L S L S L S S S 

L L L S L L S S S S 

0 L L L L L L L L L L 

L L L S S L L L L S 

it L L L L S L S S L L 

L L L S L L S L S L 

L L L S S L S L L L 

L L L S S L L S S S 

L L L L S L S S S S 

L L L S L L S S S S 

25 

26 

27 

28 

29 

3 0  

31 

32 

0 L L L L L L L L L 

it L L L S S L L L S 

it L L L S L S L L L 

~t L L L L S S L S L 

it L L L S S S L L L 

lr L L L S S L L S S 

Tt L L L S L S L S S 

it L L L L S S L S S 
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precisely two of the magnitudes (2.5) are large and the 
remaining two are small. 

It should be noted in passing that a more detailed 
study of Table 2 leads in a similar way to the definition 
of the second neighborhoods of T, but this work is 
beyond the scope of the present paper. 

APPENDIX IV 

The integral formula for P, the joint probability 
distribution of the seven structure factors whose 

magnitudes constitute the first neighborhood of T 

Suppose that (h,k,I) is the primitive random variable 
which is assumed to be uniformly distributed over the 
subset of W × W x W defined by (2.2). In view of 
(2.2), the eight reciprocal vectors 

½(_+ h +_ k + I) (IV.l) 

have integer components; but only four of the eight 
magnitudes 

IE~(+ h_k+l)]  (IV.2) 

are  d i s t inc t .  T h e  s e v e n  s t r u c t u r e  f a c t o r s  

S 1 : E h, S 2 --~ Ek,  S 3 = El;  (IV.3) 

S = E~(h+k+ l )  , S 1 = E ~ _ h + k + l )  , 

S2 : E~(h - k + D' S3 : E~(h+ k-I) ,  
OVA) 

as functions of the primitive random variable (h,k,I), 
are themselves random variables. Denote by 

P = P(81,82,83;S,Si,$2,$3) (IV.5) 

the joint probability distribution of the seven structure 
factors (IV.3) and (IV.4). Then, following Karle & 
Hauptman (1958), P is given by the sevenfold integral 

oo 

1 f P - (2z07 exp { - i [S  1 X, 
X I , X 2 , X 3 , x ,  x I , X 2 , X  3 -~- --(30 

+ $2 X2 + S3 X3 + sx + s, xl + s2 x2 + s3 x3]} 
u/2 

x 1-I gj dX1 dX2 dX3 dx dx~ dx 2 dx 3, (IV.6) 
j = l  

Table 2. The probable values of the structure seminvariant T, given the magnitudes lEt in the second neighbor- 
hoods of its extensions; L means large; S means small; obtained by combining reinforcing rows in Table 1 

Derived 
from Magnitudes IEI 

Rows of i 
Row Table l T h k ~ ~(h+k-J~) h+k k+~ 

l 1,9,17,25 0 L L L L L L L L L L L L L L L L L 

½(,÷k+~ ½(-,÷k÷ 9 ½(,-k+ 9 

2 2,10 x L L L L L S 

3 3,19 ~ L L L L S L 

4 4,28 ~ L L L L S S 

5 I I , 2 7  ~ L L L S L S 

6 12,20 ~ L L L S L L 

7 18,26 ~ L L L S S L 

8 2,14 ~ L L L L L S 

9 3,23 v L L L L S L 

I0 4,32 x L L L L S S 

I I  6,10 v L L L L L S 

12 l l ,31 x L L L S L S 

13 12,24 ~ L L L S L L 

14 18,30 v L L L S S L 

15 7,19 v L L L L S L 

16 16,20 ~ L L L S L L 

17 22,26 ~ L L L S S L 

18 15,27 x L L L S L S 

19 8,28 ~ L L L L S S 

S L S 

S L L 

L S L 

L L L 

S L 

L L 

S L S 

S L L 

L S L 

S S S 

L S L 

S L 

L S 

S S S 

S S 

L L 

L L S 

L S S 

S S S 

S S S 

L S S 

L S S 

S S 

L S 

20 6,14 ~ L L L L L S 

21 7,23 ~ L L L L S L 

22 8,32 ~ L L L L S S 

23 15,31 v L L L S L S 

24 16,24 ~ L L L S L L 

25 22,30 ~ L L L S S L 

£+h h-k k-£ £-h h+k+E -h+k+~ h-k+£ h+k-£ 

L L L S S 

S L L S S 

L L L S S 

L L S S S 

L S L L S S 

L L S L S S 

L S S S L 

S S S S L 

L S S S L 

S L L L S 

L S S S L 

S S S L S L 

L L S S S L 

S L L L S 

L S L S L S 

S S S L L S 

S L S L S 

S L L L S 

S S S L L 

S S S L L 

S S S L L 

S S S L L 

S S S S L L 

S S S S L L 
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where APPENDIX VI 

/ 
gj = xp [~2u 2 [X  1 cos 27rh. rj + X 2 cos 2z&. r i 

+ X 3 cos 2zd. rj + x cos zr(h + k + I). rj 

+ x 1 cos zr(--h + k + !). rj 

+ x z cos zc(h -- k + 1). rj 

+ x3 cos zc(h + k - -  I). rj] } )  (IV.7) 
h,k,I 

and the average in (IV.7) is taken over all reciprocal 
vectors satisfying (2.2). 

APPENDIX V 

The derivation of& 

Expanding the exponential and carrying out the 
indicated average in (IV.7), one finds after a short 
calculation that 

g j =  {1 -- ( f ~ / a z ) ( X  ~ + X z + X]  + x 2 + x~ + x~ + x~) 

2" 3 3/2 - - (  i f ~ / o  2 ) ( X I X X  1 -b X 2 x x  2 -4- X 3 x x  3 

.q- X l  X2 X 3 q- X 2  x3 x 1 + X3  Xl X 9 

+ (2f]/crZ~)(X1X2xx3 + X 2 X 3 x x  , + X 3 X l X X  2 

+ Y l  y~ x~x, + X ,  X3 x2 x3 + X3 y l  x3 x~ 
• 5 5/2 + xx~ x2 x3) + (/f~/a2) x~ x2 x3 

x (x z + x~ + x~ 4 x~)}'{1 +'O(1/N2)I, (V.1) 

where O(1/N z) consists of all terms of order 1/N z or 
higher which contribute only to terms of order higher 
than 1/N 3/z in the final result [(4.2)--(4.5)]. 

N/2 
The derivation of ]-I gj 

J=l  

Using (V.1), one readily calculates log gj, 
N/2 

log gi 
j = l  

and, finally, from the identity 

[ I  gj = exp log , (VI. 1) 
j = l  ~,j=l 

one finds 

N/2 
1 2 X 2 2 I ]  gj = exp {---~(X 1 + Xz 2 + X]  + + Xl 2 -q- x22 q- X3) } 

j = l  

x {1 -- ( ia3/~/z)[Xl(xxl  + x z x3) 

+ X2(xx2 + x3xl) + X3(xx3 + x, x2)] 
+ (o4/ob[x~ X2(xx3 + x, x~) 

-}- X 2  X 3 ( x x  1 .4- x 2 x3) -b X 3 X I ( x x  2 .-1- x 3 Xl) 

q- XX 1 X 2 X 3 ] 

--(cr~la~){X, X2[xx3(x ~ + x~) + x, x2(x 2 + x])] 
+ X 2 & [ x x , ( x ~  + x~)+ x2x~(x ~ + x~)] 
+ X 3 Y l [ X X 2 ( X  2 + x21) + x3 Xl(X 2 + x22)] 

+ ( x ]  + x ~, + X])xx ,  x~x~} 

+ (ias/Za~/2)X1X2X3(x z + x~ + x~ + x]) 

- -  ( i a  3 174/(772/2)X1X2X3(x  2 x21 + x 2 x  2 + x 2 x 2 

2 2 + x ~ x  ~, + ~ x ~  + x~x~) 

+ ( i a ] / a 9 / 2 ) X 1 X 2 X 3 ( x 2  2 2 X 2 

+ x 2 x Z x ]  + x~x~x])l l{1 + O(1/N)},(VI.2) 

in which O(1/N) consists of all terms of order 1/N or 
higher which contribute only to terms of order higher 
than 1/N 3/z in the final result [(4.2)-(4.5)]. 

Table 3. The probable value o f  the structure seminvariant T, given the seven magnitudes in its first neigh- 
borhood; L means large; S means small; obtained by combining reinforcing rows from the first seven columns 

(under magnitudes IEI) of  Table 2 

Derived from ~ Magnitudes IEI ~_ 
rows o f  

Row table 2 T h k .I ½(h + k + I) ½(-h  + k + I) ½(h - k + !) ½(h + k -- 1) 

1 1 0 L L L L L L L 

2 2, 8 , 1 1 , 2 0  7r L L L L L S S 
3 3, 9, 15, 21 rc L L L L S L S 
4 4, 10, 19, 22 rc L L L L S S L 
5 5, 12, 18, 23 zc L L L S L S L 
6 6, 13, 16, 24 7r L L L S L L S 
7 7, 14, 17, 25 zc L L L S S L L 
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A P P E N D I X  VII 

The derivation of  P 

Substituting from (VI.2) into (IV.6) and carrying out 
the indicated sevenfold integration, one finds 

1 
- -  - - - ~ ( S 1  -1- S 2 + S i P -  (2re) 7/2 exp { 1 2 

+ s 2 + s ,  ~ + s ,  ~ + s ~ ) /  

× {1 + (0.3/0.3/2)[51(SS1 "F $2S3)  

-t'- S 2 ( S S  2 + S 3 SI)  + S 3 ( S S  3 -'t'- S I $2)] 

+ (0.4/0.~)[S 1 S2(ss  3 + s I $2) + S 2 S3(ss1 + s 2 $3) 

+ S 3 S l ( S S  2 -1- S 3 SI)  -t- SS 1 S 2 S3] 

+ (0.~/0.9{sxs2[ss3(s ~, + s ~ -  2) 

+ s, s2(s 2 + s ~ - 2 ) 1  

-[- S 2 S 3 [ s s I ( s  i -'[- S 2 -  2)  -1- S 2 S 3 ( S  2 -']- $21 - 2)1 

"t- S 3 S 1 [ s s 2 ( s  i "1" S 2 -  2) + S 3 S I ( S  2 -]- S i - -  2)1 

+ ss,  s2s3(S~ + S 2 + S ~ -  3)} 

+ (0.5/20.~/2)S, S 2 S3(s 2 + s~ + s~ + s ] - 4 )  

"t- (0" 3 0 . 4 / 0 . 7 / 2 ) S 1 S  2 S 3 [ ( s  2 - -  1)(s 2 + s~ + s~-- 3) 

+ (s~-- 1)(s22 - 1) + (s~-- 1)(s]--  1) 

+ (s] - -  1)(s~-- 1)1 
3 9/2 + (0.3/0.2)S1 S2 $3[( s 2 -  1)(s~-- 1)(s~-- 1) 

+ (s 2 -  1)(s 2 -  1)(s]--  1) 

+ (S 2 -  1 ) ( S ] -  1)(s~-- 1) 

+ (s~-- 1)(s~-- 1) (s] -- l)] } {1 + O(1/N)}, 

(VII. l)  

where O(1/N) consists of all terms of order 1 / N  or 
higher which contribute only to terms of order higher 
than 1 / N  3/2 in the final result [(4.2)-(4.5)]. 

Next, using (VII. l)  to calculate log P, and the 
identity 

P = exp (log P), (VII.2) 

one finally finds the joint probability distribution, in 
pure exponential form, of the seven structure factors 
(IV.3) and (IV.4): 

1 
P -  (27r)7----- ~ exp { -~(S  2 + S~ + S]  

+ s 2 + sl z + s 2 + s3Z)} exp {(0.3/o3/2)[S,(ssl + $2S3) 

+ S 2 ( s s  2 -t- s 3 Sl)  -+- S 3 ( s s  3 --1- s 1 s2)] 

- - [ ( 2 0 . 1 - - G 2 0 . 4 / 0 . 3 2 ] [ S 2 S 3 ( s S 1  + $2S3)  

-Jr" S 3 S l ( S S  2 + s 3 Sl)  -k- S 1 S 2 ( s s  3 --}- S 1 $2)] 

+ (1/20.9/2)( 60.] --60"2 0.3 0.4 + 0.2 0.5) 

x S~ $2 S3(s 2 + s 2 + s~ + s~) 

- (2/09/2)(20.33 -- 302 03 04 + a 2 as )S  1 $2 $3} 

x / 1 + O(1/N) }, (VII.3) 

where again O(1/N) consists of terms of order 1 / N  or 
higher which contribute only to terms of order higher 
than 1 I N  3/2 in the final result [(4.2)--(4.5)]. Presumably 
(VII.3) is a more accurate representation of P than 
(VII. 1) since it is non-negative everywhere [a property 
not shared by (VII.l)] and agrees with (VII.l),  except 
possibly for an irrelevant normalizing factor, up to and 
including terms of order 1IN 3/2. 

A P P E N D I X  VIII 

The joint conditional probability distribution of the 
three phases tph, tp~, ~ given the seven magnitudes (2.4) 

and (2.5) 

With the probabilistic background described in {}3, the 
phases Oh, Ok and ~0~ of the structure factors Eh, Ek and 
El, respectively, are functions of the primitive random 
variable (h,k,l), and therefore are themselves random 
variables. Denote by 

P3 - P(q~I, @2, ~3 IR1, R2, R3; r, r l, r2, r3) 

(VIII . l )  

the joint conditional probability distribution of the three 
phases q)h, qTk, qh, given (2.2), (2.4) and (2.5). Then P3 is 
obtained from (VII.3) by fixing the magnitudes of S 1, 
S 2, $3; s, s 1, s 2, s 3 in accordance with the scheme 

ISll =R1 ,  IS21 =R2 ,  IS3l = R 3 ;  (VIII.2) 

IsI = r, 

i.e. 

S~ -- R ~ c o s  1/)1, 

Is11 = r I, IS21 = r2, IS 31 = r 3, 
(VIII.3) 

S 2 = R 2 c o s  (I)2, S 3 = R 3 c o s  (~3; 

(VIII.4) 

S = F COS ~, S 1 = F 1 COS ~1, $2 = r2 COS (02, s 3 = r 3 Cos  (~3, 
(VIII.5) 

where q) is the variable associated with the phase 
~0½(h+k+~ q)l with ~0½(-h+k+~) etc., summing with respect to 
s, s 1, s 2, s 3 over their two possible signs (+ and - )  or, 
equivalently, summing with respect to qT, qh, qh, q73 over 
their two possible values (0 and n), and multiplying the 
result by a suitable normalizing factor. Carrying out 
these summations one finally obtains, correct up to and 
including terms of order 1 / N  3/2, 

1 
P3 = 7;-./Z3, (VIII.6) 

/~3  
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where 

Z 3 = e x  p {Vcos (01 + • 2 + 03)} 

3/2 x Z exp {(0"3/0" 2 ) 

x [(eel rra + e2 e3 r2 r3)R a cos O 1 

+ (ee2 rr2 + e3 el r3 ra)R2 cos • 2 

+ (ee3 rr3 + e,a e:rl rz)R3 cos 03] 

- -  (1/0.=3)( 20.2 -- 0.2 0.4) 

x [(eea rrl + ez e3 rE r3)Rz R3 cos (Oz + 03) 

+ (eez rr2 + e3 ea r3 rl)R3 RI cos (03 + Oa) 

+ (ee3 rr3 + ea ezra rE)R1 RE cos (O1 + O2)] }. 

(VIII.7) 

V is defined by (4.4) and (VIII.7) is a sum of the 16 
exponentials obtained by permitting each of e, el, ez, e3 
to take on the values + 1 and - 1  independently. The 
normalizing parameter K 3 is not relevant for the present 
purpose and is therefore not derived here explicitly. 

Under the transformation 

/1 = E COS (01  + O 2 + O3), r/j = ej cos Oj, j = 1, 2, 3, 
(VIII.8) 

(VIII.9), and Z 3 finally becomes simply 

Z 3 = e x p  {Vcos (01  + 02 "+" 03)} 

3/2 x Y exp {(o3/0.: ) 
/~Dq2,/~3 = + 1 

x [(r/1 rrl + r/: r/3 r2r3)Ra 

+ (r/2 rr: + r/3 r/1 r3 ra)R2 

+ (r/3 rr3 + 111 112 rl r2)R31 cos (O1 + 0 :  + • 3) 

-- (1/0.=s)(20.~ -- 0.: 0.4) 

x [(r/lrrl + rhr/3rzr3)R2R 3 

+ (r/2 rr2 + */3 rh r3 rl)R3 R1 

+ (r/3 rr3 + r / lr /zrarz)RaR:]} ,  (VIII.10) 

in which the summands consist of the eight exponen- 
tials obtained by permitting each of r/l, r/2, r/3 to take on 
the values + 1 a n d -  1 independently. 

In view of (VIII.10), P3 [(VIII.6)] is seen to be a 
function of the structure seminvariant 01 + 0 2 + 03. 
Hence (VIII.6) leads immediately to the major result of 
this paper [(4.2)-(4.5)], the conditional probability 
distribution, P+, of the three-phase structure semin- 
variant T, given the seven magnitudes I EI in its first 
neighborhood. 

(VIII.7) becomes 

Z 3 = exp {Vcos (O a + • z + 03)} 

x Z exp { (O3/a 3/2) 
q, qt ,  rh, q3 = + 1 

x [(r/r/l rr a + r/2 r/3 rzra)Ra + (r/r/2 rr2 + r/3 r/ira ra)R2 

+ (r/r/3 rr3 + r/1 r/2 F1 F2)R3] 
x cos (Ox + 02 + 03) -- (1/a~)(2a 2 -- 32 0.4) 

x [(r/r h rr I + r/2 r/3 r2 ra)R2 R3 

+ (r/r/2 rr2 + r/3 r/a r3 rt)R3 R 1 

+ (r/r/3 rr3 + r/a tl2 ra rE)Ra RE] }, 

(VIII.9) 

so that the dependence on the structure seminvariant 
O 1 + O 2 + O 3 is explicit. In view of the transformation 
(VIII.8), (VIII.9) is also a sum of 16 exponentials 
obtained by permitting each of r/, r/l, r/2, r/3 to take on 
the values + 1 a n d - 1  independently. 

Replacing r/, r h, r/2, r/3 simultaneously by their 
negatives leaves the argument of the exponential in 
(VIII.9) unchanged. Hence only eight of the 16 
summands in (VIII.9) are distinct, the summands being 
equal in pairs. Thus r/ may be set equal to +1 in 
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